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ABSTRACT 

In this contribution the three various artificial neural 
networks are tested on CATS prediction benchmark. 
The results are compared and evaluated. Furthermore, 
these artificial neural networks are tested in model 
predictive control on the t-variant system. The aim of 
this paper is to present and compare artificial neural 
networks as interesting way how to model and predict 
nonlinear systems even with t-variant parameters. The 
key features of this paper are emphasis of the 
computational costs of the selected predictors and usage 
of adaptive linear network which offers short learning 
times and remarkable prediction error.  
 
INTRODUCTION 

The increasing demand on the quality, reliability, and 
economical profits leads to using of new modeling and 
control methods in the process industry. In past few 
decades the predictive control techniques have become 
very popular. One of the most used approaches is the 
Model Predictive Control (MPC) method (Camacho and 
Bordons 1995). 
 
The appropriate predictive model is a key question in 
nonlinear model predictive control. The predictive 
models can be divided into two main groups (Verdunen 
and Jong 2003): white box models and black box 
models. The white box modeling is established on a 
prior knowledge of mathematic description of basic 
physical rules of controlled process. White box models 
are excellent for process modeling and product 
development. The model constants have a physical 
meaning and are not dependent on process design. The 
main disadvantage of white box models is the time of 
development and higher complexity. Conversely, black 
box models such as artificial neural network (ANN) and 
fuzzy logic models are data-driven. They provide 
general method for process dynamics description from 
input-output data. First and foremost, the learning 
ability makes artificial neural networks versatile, user 
friendly and powerful tool for many practical 
applications (Hussain 1999). 
 

Many predictive control techniques based on MPC, 
which use artificial neural network as a predictor, are 
established on multilayer feed-forward neural networks 
(Hagan et al. 2002; Kanjilal 1995). In spite of the fact 
that the multilayer feed-forward neural networks 
(MFFNNs) have many advantages, such as simple 
design and scalability, they have also many drawbacks, 
such as long training times and choice of an appropriate 
learning stop time (the over-learning versus the early 
stopping). Nevertheless, there are quite a number of 
ANN types suitable for the modeling and prediction 
(Liu 2001; Meszaros et al. 1999; Chu et al. 2003). 
Moreover, features of these ANNs exceed abilities of 
the MFFNN in many cases. One of these ANNs is 
ADALINE (ADAptive LInear NEuron). What is more, 
ADALINE has one special feature – adaptivity. Owing 
to its simple structure it offers interesting way how to 
design adaptive neural predictor with reasonable 
computational demands. This paper is organized as 
follows: In the beginning multilayer feed-forward neural 
networks and adaptive linear networks are briefly 
introduced. Then the methodology of the simulations is 
explained, after that the results are presented and the 
paper is concluded by final remarks. 
 
MULTILAYER FEED-FORWARD NEURAL 
NETWORKS 

Multilayer feed-forward neural networks were derived 
by generalization from Rosenblatt’s perceptron, thus 
they are often called multilayer perceptrons (MLP). This 
type of artificial neural networks uses supervised 
training. One of the most known methods of supervised 
training is backpropagation algorithm; hence these 
ANNs are sometimes also called backpropagation 
networks.  
 
In the MFFNN the signals flow between the neurons 
only in the forward direction i.e. towards the output. 
Neurons in MFFNN are organized in layers and neurons 
of the certain layer can have inputs from any neurons of 
the earlier layer. The ability to predict of ANN is 
determined by capability of modeling of certain process. 
By applying the Kolmogorov theorem it was proved that 
for general function approximation is sufficient two-
layer MFFNN (one hidden layer) if non-polynomial 
transfer functions are used and the hidden layer has 
enough neurons (Leshno et al. 1993). 
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Figure 1: Simplified Scheme of Two-layer MFFNN 
 
The two-layer MFFNN, which contains one output layer 
and one hidden layer, is depicted in the figure 1 (this 
structure is implemented in this paper). This MFFNN 
can be described by two equations: 
 

࢞૚ ൌ ଵܵሺ࢈૚ ൅ ૚ࢃ ·  ሻ   (1)࢔࢏࢛
 

࢚࢛࢕࢟ ൌ ܵଶሺ࢈૛ ൅ ૛ࢃ · ࢞૚ሻ   (2) 
 
Where yout is the network output vector, Si is transfer 
function of i-th layer, bi is bias vector of i-th layer, Wi is 
weighting matrix of i-th layer, x1 is output vector of the 
first layer and uin is the network input vector. 
 
ADAPTIVE LINEAR NETWORKS 

ADALINE was described by B. Widrow and M.E. Hoff 
as an adaptive threshold logic element in 1960 (Widrow 
and Hoff 1960). Though, the original version of 
ADALINE had only simple two-state threshold transfer 
function with the range of function {-1;+1}, nowadays 
ADALINE is also used with linear transfer function 
(Arbib 2002; Demuth and Beale 2002). Although this 
structure has limited skills, it is possible to connect 
more of ADALINEs together to obtain a MADALINE 
(Multiple ADALINE). 
Despite the fact that ADALINEs are able to solve only 
linearly separable problems, it has been shown in 
practice that they can approximate nonlinear functions 
with sufficient accuracy while using enough number of 
neurons (Freeman and Skapura 1991).  
Because of their main advantage, that is very fast 
learning, they have many practical applications, e.g. 
noise reduction, signal processing and signal prediction 
in control and communication systems. Simplified 
scheme of ADALINE is shown in figure 2. 
 

 
 
Figure 2: Simplified Scheme of ADALINE with Linear 

Transfer Function  
 

The learning procedure is based on an iterative search 
process, where performance feedback is used to guide 
the search process. In other words, a designer “trains” 
the system by “showing” it examples of inputs and the 
respective outputs. In this way, system competence is 
directly and quantitatively related to the amount of 
experience the system was given. The most popular 
learning method is simple LMS (Least Mean Square) 
algorithm (Widrow and Hoff 1960), often called the 
Widrow Hoff Delta Rule (Rumelhart et al. 1986), which 
is adopted in this paper. This method is based on the 
minimization of Mean Square Error (MSE). 
 
METHODOLOGY 

The three different artificial neural networks were tested 
in prediction problem. There were chosen two different 
variants of two-layer feed-forward neural network. The 
first structure followed from Kolmogorov theorem 
(Leshno et al. 1993) and had hyperbolic tangent transfer 
function in both layers (this structure will be in the 
following text denoted as mffnntt), while the second 
structure uses very common layout with hyperbolic 
tangent transfer function in hidden layer and linear 
transfer function in output layer (this structure will be in 
the following text denoted as mffnntp). The third 
predictor was based on ADALINE (this structure will be 
in the following text denoted as adaline). 
 
The artificial neural networks were tested in two tasks. 
The first task was the prediction of time series defined 
by CATS benchmark (Vandewalle et al. 2007; Lendasse 
et al. 2004). Then the artificial neural networks were 
used as the predictors of Model Predictive Controller. 
 
CATS Benchmark 

The CATS (Competition on Artificial Time Series) 
benchmark was designed in order to compare various 
prediction methods. The task of the predictor is to 
predict 100 missing values of the 5000 artificial time 
series data. The missing values are divided in 5 blocks – 
981 to 1,000; 1,981 to 2,000; 2,981 to 3,000; 3,981 to 
4,000; 4,981 to 5,000.  
 
CATS benchmark uses two criterions E1 and E2: 
 

( ) ( )

( ) ( )

( )

100

ˆ

100

ˆ

100

ˆ

100

ˆ

100

ˆ

5000

4981

2

4000

3981

2
3000

2981

2

2000

1981

2
1000

981

2

1

∑

∑∑

∑∑

=

==

==

−
+

+
−

+
−

+

+
−

+
−

=

t
tt

t
tt

t
tt

t
tt

t
tt

ee

eeee

eeee
E

   (3) 

 

W1

b1

S1

u
W2

b2

x1

S2

y

Input 1.st layer 2.nd layer Output

in out

W

b

S

u y

Input ADALINE Output

in out



 

 

( ) ( )

( ) ( )

80

ˆ

80

ˆ

80

ˆ

80

ˆ

4000

3981

2
3000

2981

2

2000

1981

2
1000

981

2

2

∑∑

∑∑

==

==

−
+

−
+

+
−

+
−

=

tt

tt

eeee

eeee
E

   (4) 

 
Where e is the real value of the signal, ê  is the 
predicted value and t is the time step. 
 
Model Predictive Control 

The selected artificial networks were tested in the 
modeling and prediction of nonlinear system of two 
interconnected ball tanks. Involving usual 
simplifications, mathematical model of the system can 
be defined: 
 

ଵሺ݀ଵ݄ߨ െ ݄ଵሻ ௗ௛భ
ௗ௧

൅ ଵݍ ൌ  ଵ௩   (5)ݍ
 

ଶሺ݀ଶ݄ߨ െ ݄ଶሻ ௗ௛మ
ௗ௧

െ ଵݍ ൅ ଶݍ ൌ  ଶ௩   (6)ݍ
 
Where dj are tanks diameters, hj are levels of liquid in 
the tanks, qj are output flow rates and qjv are input flow 
rates (j denotes number of tank). Input flow rates 
depend on the liquid levels: 
 

1ݍ ൌ ݇1ඥ|݄1 െ ݄2|       (7) 
 

if ݄ଵ െ ݄ଶ ൏ 0  then ݍଵ ൌ െ ݍଵ   (8) 
 

ଶݍ ൌ ݇ଶඥ݄ଶ       (9) 
 
Where k1 and k2 are constants describing the pipes. 
Initial conditions of equations (5) and (6), that were 
obtained from steady state, are h1(0)=1,5m, h2(0)=1,3m, 
q1v(0)=0.38m3/min, q2v(0)=0.19m3/min. System is 
regarded as SISO – controllers task is to control liquid 
level in the first tank (h1=y) by influencing input flow 
rate q1v (u). Second input flow rate remains constant.  
 
In order to test the adaptivity of the predictors, 
parameters d1 and d2 were rapidly changed during 
simulation at time t=100min. This change is physically 
unfeasible and can be done only in the simulation. 
These parameters were chosen with the intention of 
better demonstration of the adaptivity feature. 
 
The controller uses classical MPC objective function 
(Camacho and Bordons 1995): 
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where N1, N2 and Nu define horizons over which the 
tracking error and the control increments are evaluated 
(usually N2 ≥ Nu). The ut variable is the tentative 
control signal, w is the desired response and ݕො is the 
network model response. The parameter ρ determines 
the contribution that the sum of the squares of the 
control increments has on the performance index. 
 
There is usually assumed that after a certain interval Nu 
< N2 there is no variation in the proposed control 
signals, that is: 
 

ሺ݇ݑ∆ ൅ ݅ሻ ൌ 0   for   ݅ א ۃ ௨ܰ, ଶܰ െ  (11)   ۄ1
 
This is equivalent to giving infinite weights to the 
changes in the control from a certain instant. This 
approach is adopted in this paper. 
 
In addition to visual comparisons of control courses, 
quadratic criterions were also used to evaluate 
individual control courses. Two quadratic criterions 
were used to describe behavior of individual controllers. 
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The symbol wj stands for the desired value of the 
controlled variable (the level of liquid) in the step j, yj is 
the controlled variable in the step j, ui is the control 
signal in the step j. The limits j=0 and j=2000 
corresponds to the simulation time 0 min and 200 min 
(because of the sampling rate 0,1 min). 
 
The Sy criterion is based on the control error and thus 
represents the tracking performance of the controller. 
The criterion Su is based on changes of control signal 
and represents the controller demands on the actuators. 
 
SIMULATIONS AND RESULTS 

All simulations were performed using 
MATLAB/Simulink.  
 
CATS Benchmark 

By many experiments it was discovered that ideal 
(sufficient) structure for MFFNN is 5 neurons in input 
layer (zero layer), 10 neurons in hidden layer and 1 
output neuron. Furthermore, it was found out that 
number of training epochs has key influence on the 
prediction quality. Thus, it was decided to explore this 
influence. There were created, trained and tested 100 
networks for each of ten different maximum numbers of 
training epochs (MTE) from the interval 25-250. In the 
tables 1-3 are presented averages of criterions E1, E2, 
final global error FGE, real number of training epochs 
RTE, prediction time PT and train time TT. 



 

 

As well as in case MFFNN, ADALINE has important 
training parameter – learning rate (LR). The influence 
of this parameter was observed in the interval 10-2-10-11. 
And, again, it was done 100 simulations for each value 
of learning rate. The average values of criterions are 
presented in the table 3. The structure of adaline 
contained 5 neurons in the input (zero) layer and 1 
neuron in the output layer. 
 

Table 1: CATS Benchmark of the mffnntt 
 

MTE E1 
(104) 

E2 
(104) 

FGE 
(10-4) RTE PE 

(s) 
TT 
(s) 

25 3,02 2,93 52,65 25,00 0,41 7,04 
50 2,44 2,44 66,92 50,00 0,41 14,07
75 2,17 2,12 10,55 75,00 0,41 21,11
100 1,76 1,61 6,89 100,00 0,41 28,26
125 1,60 1,51 5,98 124,92 0,41 35,13
150 1,49 1,38 5,70 149,69 0,41 42,06
175 1,48 1,38 5,54 171,19 0,41 48,05
200 1,46 1,34 5,43 191,82 0,41 53,73
225 1,46 1,34 5,34 208,67 0,41 58,68
250 1,52 1,41 5,32 219,60 0,41 62,17

 
Table 2: CATS Benchmark of the mffnntp 

 

MTE E1 
(104) 

E2 
(104) 

FGE 
(10-4) RTE PE 

(s) 
TT 
(s) 

25 55,61 55,27 34,56 25,00 0,40 7,28 
50 9,98 10,62 13,66 50,00 0,40 14,10 
75 5,80 6,05 8,67 75,00 0,40 21,11 
100 2,37 2,42 7,08 100,00 0,40 28,02 
125 3,51 3,48 6,36 124,75 0,40 34,88 
150 4,06 3,93 5,76 149,13 0,40 41,72 
175 1,69 1,61 5,40 173,58 0,40 48,51 
200 2,21 2,17 5,28 195,21 0,40 54,52 
225 2,22 2,16 5,14 213,43 0,40 59,11 
250 2,02 2,02 5,12 225,35 0,40 62,24 

 
As can be seen from tables 1-3, the best results from the 
point of view of criterions E1 and E2 were obtained by 
mffnntt. The mffnntp has slightly worse results, but not 
very significantly. The highest values of the criterions 
were obtained by adaline. However, the computational 
times (training time TT and prediction time PT) were 
shortest in case of adaline.  
 
As can be seen from table 1, the best CATS predictor 
from the tested group is mffnntt trained approximately 
200 epochs. From the table 3 it can be concluded that it 
is useless to set lower learning rate (LR) than 1·10-4. 
 

Table 3: CATS Benchmark of the adaline 
 

LR E1 E2 FGE RTE PE 
(s) 

TT 
(s) 

10-2 7,59·1042 8,97·1042 0,17 1 0,55 0,13 
10-3 4,99·1013 5,75·1013 0,17 1 0,62 0,16 
10-4 2,50·104 2,66·104 0,17 1 0,51 0,09 
10-5 2,50·104 2,46·104 0,17 1 0,55 0,14 
10-6 2,51·104 2,45·104 0,17 1 0,69 0,21 
10-7 2,51·104 2,45·104 0,17 1 0,38 0,14 
10-8 2,51·104 2,45·104 0,17 1 0,39 0,16 
10-9 2,51·104 2,45·104 0,17 1 0,50 0,14 
10-10 2,51·104 2,45·104 0,17 1 0,46 0,11 
10-11 2,51·104 2,45·104 0,17 1 0,51 0,13 

 
Model Predictive Control 

Controller parameters were set to: ρ=0,8; N1=1; N2=20 
and Nu=5. All predictors (ANNs) used 5 recent values of 
control signal and 5 recent values of output signal for 
prediction. Thus, the ANNs had ten inputs and one 
output.  
 
The structure of mffnntt and mffnntp consisted 10 
neurons in input layer (zero layer), 25 neurons in hidden 
layer and 1 output neuron. The structure of adaline 
contained 5 neurons in the input (zero) layer and 1 
neuron in the output layer. 
 
Due to satisfactory control performance during 
beginning of experiment all predictors were trained off-
line from off-line prepared data. However, the 
ADALINE predictor was adapted during its function at 
each time step. Simulation results are shown in the 
figures 3-5 and table 4.Controller uses sampling rate 
0,1 min and Levenberg-Marquart method was used as 
the optimization algorithm of the (10). 
 

 
 

Figure 3: Control Using mffnntt  
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Figure 4: Control Using mffnntp  
 

 
 

Figure 5: Control Using adaline  
 

Table 4: Comparison of the Predictors in MPC 
 
Predictor of the 

controller Criterion Sy Criterion Su 

mffnntt 577,39 140,51 
mffnntp 92,84 15,22 
adaline 40,23 0,22 

 
As can be seen from figures 3-5 and the table 4, the best 
results were gained using adaline predictor. The 
predictors based on MFFNN lead to oscillations of 
control signal. This behavior could be reduced by 
changing controller parameters (especially increasing ρ 
parameter). Furthermore, from the courses after change 
of system parameters (time=100min) it can be 
concluded that MFFNN based predictors do not provide 
natural adaptive prediction. However, ADALINE from 
its structure offers adaptivity, as was depicted in the 
figure 5. What is more, ADALINE has very simple 
structure thus the computational demands of the 
controller are notably low. 
 

CONCLUSION 

From the simulations it can be stated that selection of 
suitable predictor based on artificial network must be 
done very carefully. For various predicted systems has 
to be used different predictors. The multilayer feed-
forward neural networks provided best results in the 
CATS benchmark of predictors. Nevertheless, in the 
model predictive control with the same types of 
artificial neural networks MFFNN did not offered 
applicable results. On the other hand ADALINE in the 
control task showed impressive results, including 
control quality, fast training and prediction times and 
adaptivity.   
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